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Abstract

Large annotated speech corpora are a critical component of re-
search in prosody. The classification of languages according
to their speech rhythm, for example, requires a great num-
ber of annotated sentences by different speakers in different
languages. We have developed Vocale, a tool for the semi-
automatic annotation of vocalic and consonantal parts of speech
because in recent models these units have been identified as
reliable acoustic correlates of speech rhythm. Vocale is based
on relative entropy and uses various additional classifiers such
as energy and length for the annotation of vowels and con-
sonants. It runs using Praat speech analysis facilities and
gives a Praat label file as an output. Vocale is open source
software and is available to the scientific community under
http://www.ime.usp.br/~tycho/tipal/prosody/vocale/.

1. Introduction

Research on speech prosody relies on large annotated corpora.
This is especially true for typological comparisons of prosodic
systems. It has been claimed since [5] and [1] that the lan-
guages of the world differ in their speech rhythm. Originally,
three classes of speech rhythm were proposed: syllable-timed
rhythm, where the time interval between sllables was supposed
to be equal; stress-timed languages, where isochrony was pro-
posed for stress beats; and mora-timing, where moras are pro-
duced with equal timing. No acoustic correlates for these claims
were ever found [7].

Current approaches to the measurement of speech rhythm
assume no discrete classes of languages any more but propose a
single dimension ranging from stress-timing to syllable-timing
on which languages can be grouped. As a phonetic correlate of
speech rhythm, the proportion and standard deviation of vocalic
and consonantal intervals in the speech signal are calculated [6].
In a comparison of ten languages it was found that they grouped
along this dimension in clusters very similar to the original clas-
sification of stress-timed and syllable-timed classes.

Due to the time-consuming work of annotating speech by
hand, no comprehensive comparisons of languages which com-
prise more than a few sentences and more than a very limited
number of speakers have yet been carried out. Furthermore, hu-
man annotation is error-prone and implicitly incoherent. For
both reasons, the development of an automatic prosodic anno-
tation system is becoming increasingly important.

Currently available automatic annotation tools either re-
quire a transcription of the spoken text as input [8], [9] or do not
annotate any phonological units smaller than the word. The un-
derlying algorithms are either Hidden Markov Models (HMM)
or Euclidian distance [2].

With Vocale we are developing a tool for a semi- automatic
speaker-independent annotation of vocalic and consonantal in-
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Figure 1: A Praat label file with the annotated vocalic and con-
sonantal intervals automaticallt produced by Vocale.

tervals in large amounts of speech data that does not reqire a
previous transcription of the speech material. It is based on rel-
ative entropy, in combination with other measurements of the
acoustic properties of speech. In the following we describe the
layout and the algorithm of the programme as well as the first
results we have obtained for English and Polish.

2. Vocale - basic layout and algorithm
2.1. Basiclayout features

\ocale takes a wav speech file as input. In order to allow the
processing of speech data with low sampling rates such as tele-
vision recordings, we are using a sample rate of 11025 Hz. Vo-
calethen uses the Praat [10] software to create a Gaussian spec-
trogram with the parameters 0 to 5000 Hz, frequency step 50
Hz and time step 2ms. The output file is a Praat label file, with
the option of converting this into an ESPS/waves+ label file [4].

This file serves as a basis for the calculation of the vocalic
proportion (V%) and standard deviation of consonantal inter-
vals (AC).

2.2. Thealgorhithm

Our computations are based on the analysis of the spectrogram
of the signal. We denote by ¢ (f) the Fourier coefficient for the
frequency f around ¢ estimated with a 25ms window, the value
of the spectrogram in time ¢ is (c:(f))>.

We define the renormalized spectrogram by

, (ce(d))?
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As a first step, we divide speech from pauses by means of the
total energy of each column of the spectrogram and the length of
the event. We have set a threshold of 0.002 for the detection of a
speech event in contrast to pause. Paired with a time constraint
of > 27ms we avoid annotating closure parts of stops as pauses.

In the second step, in the range of 0 to 1000 Hz, the relative
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Figure 2: Classification of rhythmic classes equivalent to Ra-
mus's findings obtained with the measurements of the integral
and the total variation of e(t).

entropy is calculated for four consecutive columns. The formula
for the relative entropy for the column p; with respect to the
column p; is

h (pelps) Zpt log( 8) )

It indicates how different the two columns are from each other
as probability measures. We use the mean value of three relative
entropies:
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Thus, vowels and nasals as WeII as voiced stops will have a low
entropy value, whereas voiceless stops, fricatives and flaps have
a high relative entropy. Time constraints for vowels and conso-
nants are applied. In addition, a smoothing factor is introduced
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It has been shown that using e(¢) as a rough measure of sonority
it is possible to replicate the result obtained by [6] (see figure
2).

In order to annotate nasals, we include the measurement of
the Euclidian distance and set a threshold for the detection of
nasals. \oiceless fricatives are annotated with the additional
classifier of low energy in the band between 0 and 1000 Hz.

In sum, Vocale uses the following classifiers:

e Pauses: low total energy and a minimal length of 30 ms.

e \owels: low relative entropy between 0 - 1000 Hz, high
energy between 0 and 5000 Hz and at least 16 ms length.

e Consonats: in general high relative entropy between 0 -
1000 Hz and at least 8ms length.

Special cases:

— nasals: low relative entropy and very low energy
above 1000 Hz

— voiceless fricatives:
1000 Hz

low energy between 0 and

— voiceless stops: high relative entropy between 0 -
1000 Hz and a minimal length of 8 ms
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Figure 3: Comparison of the human annotations (above) with
the automatic annotations (below).

3. First Reaults

We are currently testing Vocale against hand-labelled data
in various languages. First, it was applied to British En-
glish speech, which constitutes part of the LeaP corpus
(http://www.spectrum.uni-bielefeld.de/LeaP/) and which was
hand-labelled and cross-checked by trained phoneticians. We
selected four speech recordings with a female and a male
speaker, one read speech and one re-telling of a story for each
speaker. In total, the human labellers annotated 398 vocalic
intervals 429 consonantal intervals and 45 pauses in the two
recordings with speaker 1 and 570 vocalic intervals, 606 conso-
nantal intervals and 72 pauses for speaker 2. These annotations
were compared with the annotations created automatically by
Vocale.

Second, we tested Vocale against ten sentences of Polish,
read by three different female speakers. The annotations were
done by Franck Ramus [6] and comprise 158 vocalic intervals,
168 consonantal intervals and 12 pauses. Table 1 presents the
results for British English. Recognition rate for vocalic inter-
vals was 67.8%, for consonantal intervals 88.9% and for pauses
71.1%. Criterion for a match between human and automatic an-
notation was the agreement of boundaries with less than 10ms
difference in the time stamp.

Table 1. Recognition rate (in %) of vocalic and consonantal
intervals and pauses by Vocale for the English data compared
to human annotations.

| speaker | vocalic intervals | consonantal intervals | pauses

speakerl 67.8 88.9 71.1
speaker2 49.9 80 97.4

Table 2 presents the results for the Polish data. Recognition rate
for vocalic intervals was 50 %, for consonantal intervals 56%
and for pauses 92%.

Table 2: Recognition rate (in %) of vocalic and consonantal
intervals and pauses by Vocale for the Polish data compared to
human annotations.

[ vocalic intervals | consonantal intervals | pauses |
| 50 | 56 [ 92 ]




4. Conclusions and Outlook

In this paper we showed that Vocale is a good alternative for the
time-consuming and error-prone task of annotating speech data
by hand. Although at the current early stage of development
the program still produces erroneous output for some speakers,
it has the advantage over hand labelled data that errors are sys-
tematic and implicitly coherent. Correction by hand is therefore
a relatively simple task.

Future developments of Vocale will include the integration
of an automatic learning model to find more classifiers and their
optimal values. This will optimize our current approach of de-
termining the values by hand. Furthermore, as shown in tables
1 and 2 and in figure 2, the mean value of the entropy changes
with the rhythmic class of the language. Therefore different lan-
guages probably require different parameters, and the learning
model will achieve finding these new parameters and assigning
their optimal values with speed and precision. We are also plan-
ning to integrate a probabilistic model in the algorithm because
it has been shown that the length of consonantal and vocalic
intervals are gamma-distributed [3].
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