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Abstract
Three models are compared for the duration and pitch contour
of American English in a speech synthesis framework. These
models combine duration prediction by Quantification Method
Type 1 (QMT1), a Codebook-based method for the F0 contour
and a Hidden Markov Model-based method for both durations
and F0. Subjective listening tests show that the HMMs are pre-
ferred over the Codebook for the F0 contour, but that their dura-
tion modelling performances are not significantly different from
those of QMT1 in the tested setup. An analysis of naive free-
form listener comments supports this fact, and suggests that
such comments can give useful hints regarding the performance
of each system.

1. Introduction
Toshiba conducts research and development of Text-To-Speech
synthesis (TTS) technology for Asian and European languages
in embedded applications. In this framework, good prosody is
important for the perceived quality of the synthetic speech, no-
tably because it participates in the naturalness of the synthetic
voice, in complement to its intelligibility. The relevant factors
of prosody include phone durations, perceived as rhythm, the
fundamental frequency contour (F0), perceived as pitch, the am-
plitude, perceived as loudness, and some aspects of the voice
quality, e.g., vocal effort, breathiness, etc. This paper focuses
on the modelling of duration and F0.

Various methods have been proposed for modelling dura-
tion and F0 in TTS systems. Some unit selection systems use
the original duration and F0 of the selected units, but such meth-
ods rigidly tie the prosodic performance of the system to the
contents of the original unit database. At the other end of the
spectrum, rule-based systems, such as the Klatt rules, predict
the duration and F0 according to the linguistic context; such
systems are totally flexible and independent from the data, but
require extensive expert knowledge that should generaliseover
all possible prosodic cases. More recent systems tend to rely
on machine learning methods which are expected to learnand
generalise from the examples available in a unit database, thus
introducing more flexibility.

Commonly used machine learning methods include Clas-
sification And Regression Trees (CART) [1], Quantification
Method Type 1 [6], Generalized Linear Models (GLM) [14],
and Additive-Multiplicative models [3].

Whereas duration is usually measured and predicted as the
duration of phones or other well-defined speech units, the repre-
sentation of the F0 contour can be parameterised in a varietyof
ways: by sampling the contour regularly or at key points across
a particular kind of speech unit; or via the control parameters of
a shape model or a production model; or via a collection of tem-
plates submitted to selection. Amongst all the possible combi-
nations of predictors and F0 representations, only few possibil-

ities have been evaluated and compared under identical circum-
stances, making it difficult to draw conclusions as to their rela-
tive quantitative and qualitative merits. This paper compares the
performances of a template-based approach and a model-based
approach for prosody modelling, all other circumstances being
kept equal.

2. General speech synthesis setup
The Toshiba TTS Research system [2] is a half phone unit selec-
tion system using explicit prosody prediction and modification.
From a functional point of view, it is divided into two parts:

Front-end – The front-end deals with Text Processing and
Prosody Prediction. The Text Processing performs, respec-
tively: sentence splitting, tokenization, prediction of pronun-
ciation and lexical stress, syllabification, Part-Of-Speech tag-
ging, parsing according to a dependency grammar, and finally
text normalisation (expansion of digits, abbreviations etc.). The
Prosody Prediction module uses the above information in a se-
ries of data-driven modules which predict: the presence or ab-
sence of prosodic phrase breaks; the presence or absence of
pauses; the length of previously predicted pauses; the pitch
accent property of each word; continuous speech effects and
speaker-specific pronunciations; and finally the duration of each
phone and the F0 contour of the sentence. Such a modular ar-
chitecture can use any available model at any of the mentioned
steps.

Back-end –In the back-end, the “plural unit selection and fu-
sion method” [8] is used to generate synthetic speech from the
phone sequence, predicted prosody and some linguistic infor-
mation given by the front-end. This method differs from the
conventional unit selection method in that several speech units,
instead of a single one, are selected for each segment and are
fused to generate a new “fused” speech unit for the segment.
After modifying the prosody of each fused speech unit, they are
concatenated to generate synthetic speech.

The systems presented in this study are trained over one of
our proprietary American English databases, containing around
2500 utterances spoken by a female native speaker, recorded
with a sampling rate of 22 050kHz and manually annotated.

In the present work, three model combinations are com-
pared for the last two steps of the prosody prediction, namely,
the prediction of the phone durations and the F0 contour. The
compared models are described in the next section.

3. Models compared
3.1. Duration prediction by Quantification Method Type 1

Quantification Method Type 1 (QMT1) [6] is a linear regression
method that estimates a numerical output from a set of categori-



cal and numerical factors. In order to integrate different types of
factors in the same linear equation, each factorf is first quan-
tised into a fixed numberc of classesfc. Hence, the input can
be described by a binary vectorx whose elementsxfc

take the
value 1 where the input belongs to the classfc, or 0 otherwise.
A regression equation can then be written as:

ŷ = ȳ +
X

f

X

c

ωfc
xfc

(1)

whereŷ is the predicted value,̄y is an average value across the
training samples, andωfc

is the weight assigned to the classc
of factorf . The weightsωfc

are estimated via a standard least
mean square minimisation across the training samples. QMT1
has been applied in speech synthesis to predict phoneme dura-
tions and syllable F0 contours for Japanese [6]. The factorsused
in our system to predict American English phone durations are
listed in Table 1.

3.2. Prediction of F0 by QMT1-based Codebook selection

The baseline version of the Toshiba TTS systems uses a
codebook-based approach to the prediction of F0 contours.
Each codebook entry represents the contour of a complete word,
with 10 equally spaced F0 samples stored per syllable. This
codebook is automatically constructed during training, accord-
ing to a clustering method which minimises the Root-Mean-
Square error (RMSE) of log-F0 over the training data [7]. At
synthesis time, four steps are performed: 1.) for each word,
an approximation error is minimised across the codebook en-
tries which are characterised by the same number of syllables,
position of primary lexical stress and punctuation-related rising
or falling contour. The approximation errors are predictedfor
each relevant entry by a corresponding QMT1 model; 2.) the
selected word-sized contours are shifted by an offset valuepre-
dicted by a single additional QMT1 model, which uses the code-
book entry identifier as an additional attribute; 3.) each contour
is time-warped, based on the predicted phone durations; 4.)the
word-sized contours are assembled to create the F0 contour for
the whole sentence, and additional rule-based smoothing and
interpolation is then applied at word boundaries, word-initial
or final unvoiced portions, exceptionally high or low F0 points,
de-accented words and the end of the sentence. The factors
used by the above-mentioned QMT1 predictors for American
English are listed in Table 1.

3.3. HMM-based prosody modelling

HMM-based synthesis [12] is a regression technique that con-
sists in finding the sequence of acoustic observations that max-
imises a log-likelihood function. This function is defined by
a sequence of Hidden Markov models (HMMs) that represent
the context-dependent phones of the sentence to be synthe-
sised. Whereas the HMMs used for Automatic Speech Recogni-
tion (ASR-HMMs) limit the context description to quinphones
and phonological features, the HMMs used in synthesis (TTS-
HMMs) add any lexical or syntactic feature that can be deduced
from the text. This entails a combinatorial explosion of the
number of models, and state tying is required to reduce the num-
ber of trained parameters to a tractable value. The tying pattern
is determined by tree-based context clustering [9]. In thisre-
spect, HMM synthesis is related to CART-based predictors.

In contrast to the ASR-HMMs, which consider only the
spectral envelopes of the speech signal, the TTS-HMMs include
a stream of pitch observations to model the F0 contour. The pa-
rameters related to the spectral and F0 streams can be tied via

independent context-clustering trees. For the present work, the
spectral envelope values are discarded at synthesis time, in or-
der to reduce the TTS-HMMs to a prosody model. However,
the spectral envelope observations still need to be considered at
training time, to bring enough information for an accurate pho-
netic alignment during the embedded training phase. In order
to accommodate a voiced/unvoiced decision in the F0 stream,
multi-space distributions (MSD) [13] are used. Such distri-
butions allow switching between different observation spaces,
each with its own dimension and modelled by a different type of
distribution, across the HMM states. For F0, the 0-dimensional
space associated with unvoiced frames is modelled by a Dirac
delta distribution, which has a zero variance by definition.

Regarding duration modelling, the standard ASR-HMMs
imply exponential duration distributions which do not fit the
natural phone duration distributions. Thus, externally trained
Gaussian duration models have to be used at synthesis time.
To achieve more coherence, our implementation uses Hid-
den Semi-Markov models (HSMMs) [15], which can enforce
Gaussian duration models both at training and synthesis time.
Whereas this entails only a small difference in the synthesis
quality for models trained with homogenous data, i.e., single-
speaker and single-style, the difference in quality has proven
significant for adapted models, or for models trained from het-
erogenous data with Speaker Adaptive Training [11].

The HMM-based synthesis of prosody can be summarised
in the following way. First the sequence of context-dependent
phones is transformed into a sequence of states, via the tree-
based selection of the HSMM parameters. Then, using the du-
ration distributions, a fixed number of frames is assigned to
each state. This sequence of frames and states defines the log-
likelihood function to be maximised. Since the MSD used to
model F0 is not differentiable in the unvoiced regions, each
frame of the state sequence is first classified as voiced or un-
voiced based on the weights assigned to the Dirac’s delta of the
MSD, prior to computing the F0 values within each voiced re-
gion via the likelihood maximisation [12]. The context features
used to train this prosody model are listed in Table 1.

The context features have been chosen independently for
each of the above models, during their respective develop-
ment. Whereas QMT1 predicts phone durations, the Codebook
method models word-sized F0 segments and the HMMs predict
frame-synchronous F0 values and state durations. As a result,
the relevant context features are quite different.

4. Experiments and results
4.1. Setup for the subjective listening tests

Three combinations of the F0 and duration models outlined
above were compared in a single listening test: Codebook-
based F0 contour with QMT1 duration prediction (denoted
“QMT1 system” in the following), HMM-based F0 prediction
with HMM-based durations (“HMM system”), and HMM F0
contour with QMT1 duration prediction (“Hybrid system”).

The three synthesis systems were compared over a sample
of 35 sentences covering various domains (10 long sentences
taken from online newspaper articles, 5 Wh questions, 5 Yes/No
questions, 5 commands and 5 exclamations) resulting in a to-
tal of 105 stimuli. Each of these were presented to 9 native
speakers of American English, in different randomised orders,
by playing them through closed headphones connected to the
sound card of a Toshiba Satellite Pro A120 laptop. The lis-
teners were instructed to give a score from 1 to 5 in answer to



Phones, words, sentence
Q H - Phone ID and phonological features in a quinphone context
H - Distance in phones to previous/next vowel
H - Number of phones in current/previous/next word
C - Type of the first/last phone (vowel, voiced consonant, unvoiced con-
sonant, plosive: closure, release) of the word
C - Position of the word in the sentence
H - Type of sentence (command, question, etc)
Syllabification
Q H C - Number of syllables in the current word
Q H - Position of the syllable in the word
H C - Number of syllables in the previous/next word
Q - Number of phones in the onset/coda
H - Number of phones in the current/previous/next syllables
Q - Position of current phone in the onset/coda/syllable
H - Phone ID and phonological features of the vowels in the cur-
rent/previous/next syllable
Lexical stress and pitch accent
C - Position of lexically stressed syllable in the current/prev./next word
C - Type of the last phone (see values above) in the stressed syllable
C - Type of phone (see values above) before the stressed vowel
Q H C - Type of pitch accent of the word
H C - Type of pitch accent of the next/previous word
H - Type of stress+accent combination in current/previous/next syllable
H - Phone ID and phonological features of the vowels in the stressed
syllable of the current word and the prev./next pitch accented syllables
Pauses and prosodic phrases
C - Distance of the word from the next/previous pause
H - Type of pause (short, long, none) at the beginning/end of current
prosodic phrase/breath group
H - No. of phones in current/previous/next prosodic phrase
H - No. of prosodic phrases in current/previous/next breath groups
H - No. of syllables in previous/next prosodic phrase/breathgroup
Q H - Position of the syllable in the prosodic phrase/breath group
H - Position of the word in the prosodic phrase, of the prosodicphrase
in the breath group, and of the breath group in the utterance
H - No. of pitch accents in curr./prev./next prosodic phrase/breath group

Table 1: List of the context features used to train the vari-
ous models:Q=QMT1 duration model,H=HSMM F0/duration
model andC=Codebook method.

the question “How much like a native speaker did the intonation
sound?”, where 1 was labelled “extremely unnatural” and 5 was
labelled “exactly like a native speaker”. The listeners were also
offered the possibility to add free-form comments that would
motivate the given score.

4.2. Mean Opinion Scores and a new “Voting Figure”

The Mean Opinion Scores (MOS) obtained for the three com-
pared systems are indicated in Table 2. Following [4], the
Wilcoxon signed rank test indicates that the scores across ALL
sentences are significantly different at the 5% level for [QMT1
vs HMM] and [QMT1 vs Hybrid], but not for [HMM vs Hy-
brid], and at the 1% level for [QMT1 vs Hybrid] only. This
indicates that Codebook-based F0 contour modelling performs
worse than HMM-based F0 contour modelling. Conversely, the
compared duration models do not seem to contribute to a sig-
nificant distinction of the results.

The MOS values rate the global performance of the com-
pared systems, but the degree to which they are a reliable indi-
cator of the differences between systems is questionable. Sup-
pose that the first half of the sentences would be rated 5 and
the second half 1 for system A, whereas the first half would be

Sentence type QMT1 HMM Hybrid

ALL 3.15 3.30 3.37
Commands 3.62 3.49 3.62
Exclamations 3.44 3.78 3.71
Long sent. 2.93 3.22 3.28
Wh questions 3.20 3.13 3.36
Yes/No questions 3.00 3.02 3.09

Table 2:MOS scores (1 – extremely unnatural to 5 – exactly like
a native speaker) obtained for the compared systems.

rated 1 and the second half 5 for system B, then both systems
would obtain an equal MOS, whereas they would perform very
differently on a sentence-dependent basis. To gain more insight
about the system differences, we have computed a voting fig-
ure in the following way: for a particular sentence produced
by systemA and systemB, and scoredSA andSB , the case
(SA > SB) counts as+1, whereas(SA == SB) counts as
0 and (SA < SB) counts as−1. By cumulating these votes
across sentences and dividing by the total number of scored ut-
terances, one obtains a figure that reaches100% when all the
sentences of systemA are preferred to their systemB version,
−100% in the opposite case, or0 if both versions are rated
equal. The results are given below, together with the triplets
of counts for the(+1, 0,−1) cases:

QMT1 vs HMM: −9.84% (77,130,108);
QMT1 vs Hybrid: −13.02% (69,136,110);
HMM vs Hybrid: −5.71% (73,151,91).

These figures confirm that the Hybrid system wins over the two
other systems and is more different from the QMT1 system than
from the HMM system.

4.3. Analysis of listener comments

As indicated in section 4.1, the listeners were encouraged to
give free-form comments for each sentence. In spite of the lis-
teners being naive, we have found their comments to be quite
meaningful, e.g.: “first instance of ’dollar’ and ’closer’ dis-
torted; flat, monotonous delivery” or “long pause, but intona-
tion is good”. A large number of comments indicated that the
listeners also paid attention to the artifacts even though they
were instructed to rate the intonation. Very few comments dealt
with the phone durations in a direct way; however, a number of
comments mentioned rhythm, speed or “choppiness” problems.

In search of a methodic way to data-mine the semantics of
these comments, and, in particular, to determine the influence
of various quality factors (artefacts, intonation, pausing etc.) on
the values of the MOS, we have manually reduced the com-
ments to sets of semantic tags that would sum them up in a stan-
dardized way. Hence, comments indicating a wrong intonation
were tagged as [INTON], comments related to the presence of
artifacts were tagged [ARTEF], indications of pausing mistakes
were labelled [PAUSE], indications of rythm and speed prob-
lems were labelled [PACE], sentence praise (e.g., “This sounds
good”) were labelled [PRAISE], and absence of comments was
tagged [NOCOM]. Other tags were also used but are not re-
ported here. A comment could have several tags, if applicable.

Table 3 compares the counts of these tags for each system.
Whereas the number of criticisms related to artefacts is rela-
tively uniform across systems, the intonation appears to have
been more often criticised for QMT1 than for Hybrid or HMM.
The two latter systems were slightly more praised than the for-
mer, and less commented on. These figures suggest that the
comments differ most where the systems differ most.



Tag QMT1 HMM Hybrid

[ARTEF] 67 (2.52) 66 (2.59) 65 (2.55)
[INTON] 72 (2.64) 65 (3.02) 55 (2.87)
[PAUSE] 19 (2.68) 22 (3.05) 22 (2.77)
[PACE] 23 (2.87) 22 (3.09) 24 (3.13)
[PRAISE] 48 (3.54) 51 (3.65) 52 (3.69)
[NOCOM] 110 (3.73) 117 (3.84) 121 (3.84)

Table 3: Count of various comment tags, out of 315 test sen-
tences for each system. The average MOS across a particular
tag/system is indicated between parentheses.

Tag QMT1 HMM Hybrid ALL

[ARTEF] −0.342 −0.395 −0.426 −0.388
[INTON] −0.282 −0.249 −0.194 −0.244
[PAUSE] −0.218 −0.272 −0.176 −0.219
[PACE] −0.138 −0.110 −0.149 −0.133
[PRAISE] 0.205 0.195 0.147 0.184
[NOCOM] 0.378 0.393 0.345 0.374

Table 4: Rank-Biserial correlation coefficient for each
tag/system, and across all systems.

Alternatively, the Rank-Biserial (RBS) Correlation Coeffi-
cient [5] can be used to correlate a nominal value (the presence
or absence of a tag) to an ordinal value (the MOS score). It is
defined as:RBS = 2 ·

`

Ȳ1 − Ȳ0

´

/n, whereȲ1 (resp. Ȳ0) is
the average MOS-derived rank of sentences for which a partic-
ular tag is present (resp. absent), andn is the total number of
rated sentences. The obtained values are given in Table 4.

As expected, the RBS values associated with the nega-
tive comments ([ARTEF], [INTON], [PAUSE] and [PACE]) are
negatively correlated with the MOS, whereas praise or absence
of comments are positively correlated with the MOS. In all
cases, this measurement would suggest that the intonation prob-
lems are relatively less correlated to a low MOS than the arte-
facts, and this is consistent across the systems. The fact that
[PRAISE] has a relatively low correlation to the MOS could be
explained by the fact that a large proportion of the sentences
tagged as [PRAISE] were of the type “This is good, but such
and such problem”, i.e., containing negative comments in ad-
dition to the initial praise. The relatively high positive correla-
tion of [NOCOM] could correspond to the expected listener be-
haviour of giving no comment when the sentence sounds good.

The method outlined in this section suggests that insight
may be gained from some naive comments about the various
aspects of synthesis quality, in order to go beyond a MOS figure
that merges all the contributing effects rather than pointing out
the weaknesses of the assessed systems. So far, the outlined
method implies a costly phase of manual lexical and semantic
analysis of the comments, operated as manual sentence tagging.
However, this stage could possibly be automated via suitable
automatic lexical or semantic analysis methods, such as those
used in data mining technology.

5. Conclusion
The present paper compares the performances of three mod-
els of prosody used in the framework of a unit-selection speech
synthesis system for American English. These models oper-
ate different combinations of duration and F0 contour model-
ing based on the Quantification Method Type 1 (QMT1), Code-
book based F0 prediction and Hidden Markov Model synthesis.

Results suggest that HMM-predicted F0 contours are preferred
over Codebook-based F0 contours, but that the durations issued
from the HMMs are not significantly better than the QMT1-
based durations. As a first step towards gaining more insight
into the respective weaknesses of the compared systems, a new
method is introduced to analyze some free-form listener com-
ments. Results suggest that naive free-form comments con-
tain meaningful clues about the performances of the compared
systems. Future work includes comparing more F0/duration
modeling combinations, and extending the comment analysis
method in order to gain a more detailed insight into the system
performances than can be deduced from the plain Mean Opin-
ion Score.
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