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Abstract

Training categorical prosody models for spoken language sy
tems requires a significant amount of speech data annotated
with the discrete labels of interest (such as boundary marks
word prominence information). In practice, the difficultyda
expense incurred in producing corpora with rich prosodia-tr
scriptions severely limits their integration within apgtions.

In this paper, we explore the possibility of using a large; un
labeled corpus to adapt, in an unsupervised fashion, dceust
prosodic models trained from a small, human-annotated seed
dataset. Our experiments show that the proposed adaptation
scheme improves the ability of the acoustic-prosodic mtalel
distinguish between prosodic categories. On a test setedkri
from the Boston University Radio News Corpus, the adapted
models reduced pitch accent detection error rate by 4.386 rel
tive to the seed acoustic-prosodic models trained from the a
notated data.

1. Introduction

Categorical representations of prosody based on annotatio
standards such as ToBI [1] have been shown to be useful for de-
signing spoken language systems, including automaticcbpee
recognition. Models linking discrete prosody labels tglirstic
elements (words and syllables) allow us to tap into the f&ral
stream of information (supplementary to traditional segme
level acoustic-phonetic features, such as MFCCs) cordaime
speech prosody, in a robust and principled fashion. Hasegaw
Johnson et al. [2] used joint prosodic-phonetic acoustid-mo
els and a prosody-enriched language model to improve speech
recognition performance. Subsequently, we presentedesrszh

for using categorical prosody models decoupled from the ASR
to rescoreN-best lists [3] and to directly enrich ASR lattices
with symbolic prosody [4] for improved speech recogniti@n-p
formance.

The key to developing categorical prosody models for
spoken language applications is the availability of prgsod
annotated speech corpora. Producing such corpora, hgwever
is a laborious and expensive exercise - with the result thett s
corpora are usually smallin size and are available onlydtect
domains. This presents a sparsity issue for training theqolp
models. For instance, a Gaussian mixture acoustic-prosodi
model (GMM) may require several hundred free parameters to
be trained with just a few thousand training samples, cgusin
the model to overfit the training set and prevent generaizat
to unseen data.

In this paper, we present a technique for unsupervised adap-
tation of GMM-based acoustic-prosodic models using a much
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larger, unannotated dataset. Our scheme involves wegthte
adaptation data using the seed models (trained from a small,
human-annotated corpus), followed by maximasrposteriori
(MAP) adaptation of the seed models using a weighted variant
of the expectation-maximization (EM) algorithm. We showatth
the adapted models outperform the seed models on the binary
pitch accent (presence vs. absence) detection task. Tlaérem
der of this paper is organized as follows: Section 2 dessribe
the data corpus used in our experiments. Section 3 desthibes
acoustic and linguistic components of the baseline pitcleisic
detection system. Section 4 provides an in-depth desonifuti

our adaptation scheme. Section 5 summarizes our expeament
results and finally, Section 6 concludes the paper with & brie
discussion of our findings and outlines future directionsrés
search.

2. Data Corpus

The Boston University Radio News Corpus (BU-RNC) [5] con-
sists of about 3 hours of read news broadcast speech from 6
speakers (3 male, 3 female) with ToBI-style pitch accent and
boundary tone annotations. The entire corpus consisted of
29,573 words, which we split into a training set (14,719 vedrd
and an evaluation set (14,854 words). After eliminatingysto
repetitions from the evaluation set, its useful size wasiced

t0 10,273 words. We then performed a 10-fold split of theeval
ation set, with 90% (9,246 words) of the data in held-out Beve
opment sets and 10% (1,027 words) in test sets. These astiti
were carried out in such a way that all 10 cross-validatiah te
sets were independent of each other. We chose a much smaller
training set than usual to simulate real-world situatiorere

very little prosodically annotated data is available, andetst

the efficacy of our algorithm in a data-starved scenario. é&s b
fore, various types of pitch accents annotated in the BU-RNC
were collapsed to binary labels that indicated presencé-or a
sence of pitch accents. A total of 7,002 words (47.5%) in the
training set carried any type of pitch accent.

The adaptation dataset was derived from the WSJ1 (CSR-
I) [6] broadcast news speech recognition corpus and ctusis
of approximately 22,400 utterances (52 hours, 407,000 syord
This corpus consists of just the speech data and assoaiated t
scriptions, and does not provide symbolic transcriptiopitith
accents or other prosodic events. The unsupervised dlgwit
described in the following sections used this corpus to tithep
seed model.



Table 1: Acoustic-prosodic features

Feature Description
VOWEL_DUR maxXyew; norm_dur(v)
FOAVG_UTT lavg FO(w;) — avgFO(utt)]
FORANGE maxzFO(w;) — minF0(w;)
FOAVG_PAVG lavg FO(w;) — avg FO(w;—1)|
FOAVG_NAVG |avg FO(w;) — avg FO(wiy1)]
FOMAX_PMAX |maxzFO(w;) — max FO(w;—1)]
FOMAX_NMAX |mazF0(ws) — mazFO(wit1)|
ERMSAVG rmse(w;) /rmse(utt)
ERMS_PRMS rmse(w;)/rmse(w;—1)
ERMS.NRMS rmse(w;)/rmse(wiy1)

3. Basdine system

The prosodic event detector used in our experiments follows
our work in [7], where we proposed a maximua¥posteriori
(MAP) structure for the prosody recognizer. Thus, our syste
chooses the sequence of binary pitch accent |dBdlsat max-
imizes their posterior probability given the acousticquodic
featuresA, and the word sequend®, according to Eq. 1.

P* = arg max p(P|Ap, W) (1)
P

We simplify the above expression by first applying Bayes’
rule and then by invoking the assumption that the acoustic-
prosodic features are conditionally independent of thécéx
evidence, given the sequence of pitch accent labels. Eqn 1 ca
then be rewritten as follows.

P* = argmaxp(Ap, W|P)p(P)
P

Q

arg;naxp(AplP)”p(W’ P) )

In Eg. 2, the RHS involves two factors - a) the prosodic
acoustic modep(A|P), which provides the likelihood of the
acoustic-prosodic features given the pitch accent labellgn
the prosodic language modg|W, P), which relates the word
sequence to the pitch accent label sequence. A weighting pa-
rameter~ controls the contribution of the acoustic-prosodic
model; low weights imply that the prosodic language model
plays a more important role in classification, and vice-&ers

3.1. Prosodic acoustic model

The acoustic model is implemented as a 25-mixture Gaus-
sian Mixture Model (GMM) with diagonal covariance strueur
Since the pitch accent labels are binary (accent vs. no §¢ccen
we trained two GMMs, one for each class, using the EM algo-
rithm. In order to test the utility of our method in sparseadat
conditions, we also trained more complex seed models with
45 mixtures. Word-level acoustic-prosodic features faintr

ing these GMMs are obtained from ASR forced alignment at
the word- and phone-level, and are based on previous work on
prosody labeling. Table 1 lists a total of 10 features exégc
from the FO track, energy, and vowel duration cues.

3.2. Prosodic language model (PLM)

The PLM is a joint probability distribution over the word se-
guenceW and binary pitch accent tag3. We implemented
it by creating compound toke®’ = (W, P) and training a
standard back-off trigram LM with these tokens. This model i

all(0) but(0) one(0)

all(1) but(1) one(1)

Figure 1: Word confusion network with prosodic variants

trained only on the annotated data from the BU-RNC. We used
the SRILM toolkit [8] to train the prosodic language model.

3.3. Labelingalgorithm

Our word-level pitch accent labeling implementation bsgin
with the construction of a word graph (“sausage”) for each te
utterance, as shown in Fig. 1. Accented and non-accentéd var
ants of a word form the arcs between successive nodes in the
graph. Next, we evaluate likelihood scores for the two padaso
variants using the acoustic model and embed these within the
corresponding arcs. The graph is then rescored with the seed
PLM. Finally, Eq. 2 is implemented using the Viterbi algbrit

to determine the best path through the resulting lattice.

4. Acoustic-prosodic model adaptation

One straightforward approach to adaptation involves utiieg
seed prosody models to obtain binary pitch accent labekhiéor
adaptation data, and using this automatically annotateaitda
adapt the seed acoustic models using standard EM-based MAP
[9]. However, the seed models are likely to exhibit a higher-
than-desirable error rate for pitch accent detection ornutiia-
beled data, thereby reducing the utility of those data fapad
tation. Instead, we propose a soft adaptation approachiichwh
the seed models assign posterior probability scores faoglio
variants of each word. These scores are then used to adapt the
seed acoustic-prosodic models using weighted EM-MAP.

4.1. Adaptation data weighting

We set up the pitch accent detection framework for the unla-
beled adaptation data using the seed models as described-in S
tion 3.3. Due to the back-off structure of the prosodic LM th
lattices generated by rescoring the word graph with the seed
models no longer retain the original sausage structure.

Next, we generate posterior probabilities for each com-
pound tokeri¥’ = (W, P) by a two-step process: 1) link pos-
teriorsp(l|Ap) are computed for each lirlkin the rescored lat-
tice using a variant of the forward-backward algorithm ahd 2
links corresponding to the same compound token are colfapse
to generate a confusion network identical to the one that was
originally created for labeling, except that the arcs in tie¢-
work now contain compound token posterior probabilitiesieo
puted from the prosodic acoustic and language models. This
technique for generating posteriors and confusion netsvigk
borrowed from minimum word error rate decoding for ASR
[10, 11]. These posterior probabilities are used as adaptat
weights in the modified EM-MAP scheme.

4.2. Weighted EM-MAP

We propose a novel, weighted EM-MAP scheme for soft adap-
tation of the acoustic-prosodic models using posteriobaro
bilities obtained from the prosodic confusion networks.isTh
method differs from conventional EM training for GMM esti-



mation in that each adaptation sample has a weight assbciate
with it. Samples with larger weights (indicative of high ¢en
dence) contribute more to the adaptation process, wheaeas s
ples with low confidence do not have a significant influence on
the adapted estimates. A distinctive feature of this apmroa

with low weights. Similarly, Eq. 7 implies that the distriflmns

are focused around samples with large confidence weights.
While the ML update equations provide intuition on how

the confidence weights impact parameter estimation, olr tas

in this paper is to adapt existing seed acoustic-prosoditetso

is that we do not divide the unlabeled data into classes based using unlabeled data. Maximumposteriori (MAP) adapta-

on confidence scores; rather, all adaptation samples &ffeiot
acoustic-prosodic models simultaneously, but to diffewse
grees. The relative influence of each sample on the GMMs is
dictated by the external information source, in this casepths-
terior probability assigned to each sample by the seed rmodel

We begin by defining a likelihood function that incorporates
the seed model weights as shown in Eq. 3.

L(®|X,B) p(X|©,B)

N K

11> wepk(@ilbw, 8:)

i=1k=1
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wherepy, (z:|0x, B;) = N (wi; ux, B, 'Sk ). This function dif-
fers from the traditional likelihood function due to integjon

of the confidence weight8 = {31, ..., 8~} associated with
vector adaptation samplé§ = {z1,...,zn}. The rationale
behind this modified likelihood function is that adaptatsam-
ples associated with a large weight “see” a narrow, focused d
tribution, whereas samples with low confidence weights™see
a diffuse, flat distribution. As we will see, this formulatio

leads to parameter update equations that emphasize samples

with high confidence and vice-versa.

Following the notation of [12], the modified auxiliary func-
tion for EM is then given by Eq. 4 (the superscript@® indi-
cates an initial “guess” for the parame®).

Q(©,0%) = E(logp(X,Y|®,B)X,08 B)
= ) logp(X,Y|®,B)p(y|X, ©%,B)
yey
K N
= > ) cirlog(wipk(x:lOk, 5:) (4)
k=1 1i=1

g g
= @8 3.) = — “kPr(@il0p.Bi)
wherec;x —p(k‘l'z, () 7ﬁz) = SR, om0 B

Using basic vector and matrix calculus [12], this modified
auxiliary function can be maximized w.r.t the unknown param
eters to obtain the following maximum-likelihood (ML) ugda
equations for the mixture weights,, mean vectorg, and co-
variance matriceXy,.
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These modified update equations make intuitive sense:
Eq. 6 is the mean of the adaptation samples weighted not only
by the mixture occupation likelihoods, as in conventional
EM, but also by the confidence weights. This suggests that
adaptation samples with large confidence weights infludmee t

tion is the traditional approach to this problem. Followihg
approach of [9], we construct a prior distribution for the GM
parameters by assuming the form of a Dirichlet distribufam
the mixture weightsv, and a normal-Wishart distribution for
the mean vectorg, and covariance matricés; (Eq. 8).

K

H Wli\k |ZI:1 |uk—d/2
k=1

PO®) «

exp (—%(M —mi) S (e — mk-))

exp (—tr(UkE,jl)) (8)
The prior “hyperparametersXy, ax, 7%, mi andUj, are
computed using the original (labeled) seed training data in
manner similar to that described in [13]. This leads to tHe fo

lowing update equations for weighted EM-MAP.
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where, for ease of notation, we have defirtgdand M, as
follows:

N

Sko= 3 Bewlwi—p)(m—m) (12)
i=1

Mi = 7i(me — ) (mi — )" (13)

As with standard EM, Egs. 9, 10, and 11 are evaluated itera-
tively until convergence.

5. Experimental results

The BU-RNC dataset was split into training and evaluatida se
as described in Section 2. The evaluation set was furthitetiv
into 10 held-out development and cross-validation testwéh
90% of evaluation data (9,246 samples) in the former and 10%
(1,027 samples) in the latter. The 10 cross-validation det
were independent of one another.

We first trained seed acoustic-prosodic GMMs and prosodic
language models as described in Section 3. For testing our
adaptation scheme in sparse data conditions, we trained mor
complex seed GMMs with 45 mixtures; we were forced to
use diagonal covariance matrices for these models becallise f
covariance matrices quickly became ill-conditioned assalte
of data sparsity. Using our adaptation technique, it isipteso
start from these seed diagonal covariance models and ti&in f
covariance models that can better fit the data, possiblyrigad
to improved classification performance as well.

The adaptation data was scored using the seed acoustic-

estimated GMM mean vectors to a greater extent than samples prosodic models and the prosodic language models to generat



Table 2: Pitch accent classification error
[ Model Held-out Test

Seed 1 (25 / diag) 27.00% 26.52%
Seed 2 (45 / diag) 26.40% 26.39%
Adapted (45 / full) 25.21% 25.26%

lattices encoding prosodic variants of each word in the &dap
tion set. Posterior probabilities (confidence weights)eatéen
obtained for each adaptation sample by converting the dcore
lattices to confusion networks as described in Section@ain-
ples corresponding to tokens not present in the PLM (OOV
terms) were discarded to ensure that the confidence weights
contained contributions from both the prosodic acoustid an
language models. The raw confidence weights were pruned so
that only those samples with a large difference betweenitbe t
class posteriors would be used for adaptation (these sample
have a very high likelihood of being labeled correctly by the
seed models). The pruned confidence scores were used to adapt
the seed models according to the weighted EM-MAP scheme
described in Section 4.2. Two parameters were sequenbigdly
timized by evaluating classification performance of thepheich
models on the held-out development data: 1) the weight of the
acoustic-prosodic model in Eg. 2 and 2) the pruning threshol
for selecting samples from the adaptation set.

Table 2 summarizes pitch accent classification error perfor

based adaptation framework would have a greater impact on
classification performance, and by how much. Our ultimate
goal is to use the adapted models within spoken languagée appl
cations, beginning with prosody-integrated speech retiogn

(1]

(2]

(3]

(4]

mance of the seed and adapted models averaged across the 10 5]

development and test sets. It is clear from these figuresrthat
creasing the number of mixtures from 25 to 45, while maintain
ing the diagonal covariance structure does not improvesifias
cation performance (only 0.5% relative on the test sets)th@n
other hand, we note that the adapted models reduce thefielassi
cation error rate by 4.5% relative to the 45-mixture seedetsod
on the held-out set®(< 0.002) and by 4.3% relative on the test
sets p < 0.06). We used the Wilcoxon matched-pairs signed-
rank test to evaluate the statistical significance of theselts.

6. Discussion

Data sparsity due to lack of large, annotated corpora is l-pro
lem encountered by almost all spoken language applications
that use categorical representations of prosody. This snake
it difficult to learn relationships between prosodic synsbol
and acoustic-prosodic features or lexical items (sylialzad
words). In this paper, we presented a novel technique based o
a modified EM-MAP algorithm to adapt seed acoustic-prosodic
models using a large, unlabeled corpus. This techniqueiperm
ted us to train full-covariance GMMs, which was not possible
with the seed training data due to sparsity. The adapted Isiode
provided classification error reduction of 4.3% relativethie
seed models on the binary pitch accent classification task.

Our main contribution in this paper was the formulation
of a modified EM algorithm for maximum-likelihood or MAP
estimation of GMM parameters in the presence of an exter-
nal knowledge source, which ranks (by assigning numerical
weights) the training or adaptation samples in order of tHoe-
longingness” to the model that represents them. This tgakeni
is very general and may be applied to arbitrary data.

One limitation of this approach is that the two GMMs are
adapted in a generative fashion; while this may likely resul
the adapted GMMs better fitting their respective classeméds
not necessarily guarantee better classification perfocman
Thus, we would like to determine whether a discriminative-

(6]
(7]
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